
J. Fluid Mech. (2007), vol. 573, pp. 339–369. c© 2007 Cambridge University Press

doi:10.1017/S0022112006003909 Printed in the United Kingdom

339

Vortices in oscillating spin-up
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Laboratory experiments and numerical simulations of oscillating spin-up in a square
tank have been conducted to investigate the production of small-scale vorticity near
the no-slip sidewalls of the container and the formation and subsequent decay of wall-
generated quasi-two-dimensional vortices. The flow is made quasi-two-dimensional by
a steady background rotation, and a small sinusoidal perturbation to the background
rotation leads to the periodic formation of eddies in the corners of the tank by the roll-
up of vorticity generated along the sidewalls. When the oscillation period is greater
than the time scale required to advect a full-grown corner vortex to approximately
halfway along the sidewall, dipole structures are observed to form. These dipoles
migrate away from the walls, and the interior of the tank is continually filled with
new vortices. The average size of these vortices appears to be largely controlled by
the initial formation mechanism. Their vorticity decays from interactions with other
stronger vortices that strip off filaments of vorticity, and by Ekman pumping at the
bottom of the tank. Subsequent interactions between the weaker ‘old’ vortices and the
‘young’ vortices result in the straining, and finally the destruction, of older vortices.
This inhibits the formation of large-scale vortices with diameters comparable to the
size of the container.

The laboratory experiments revealed a k−5/3 power law of the energy spectrum
for small-to-intermediate wavenumbers. Measurements of the intensity spectrum of
a passive scalar were consistent with the Batchelor prediction of a k−1 power law at
large wavenumbers. Two-dimensional numerical simulations, under similar conditions
to those in the experiments (with weak Ekman decay), were also performed and
the simultaneous presence of a k−5/3 and k−3−ζ (with 0<ζ � 1) power spectrum
is observed, with the transition occurring at the wavenumber at which vorticity is
injected from the viscous boundary layer into the interior. For higher Ekman decay
rates, steeper spectra are obtained for the large wavenumber range, with ζ = O(1) and
proportional to the Ekman decay rate. Movies are available with the online version
of the paper.

1. Introduction
Laboratory experiments of oscillating spin-up of rotating fluids in square containers

and direct numerical simulations of two-dimensional oscillating spin-up in square
domains with no-slip boundaries have been conducted. With this experimental
technique, which enables continuous generation of vortices in a confined area (even
with the possibility of varying the bottom drag by changing the water depth), we

† Present address: Department of Physical and Environmental Sciences, University of Toronto,
1265 Military Trail Road, Toronto, Ontario M1C 1A4, Canada.



340 M. G. Wells, H. J. H. Clercx and G. J. F. van Heijst

investigate the production of small-scale vorticity near the no-slip sidewalls of the
container and the formation and subsequent decay of wall-generated quasi-two-
dimensional vortices. The decay of the vortices is due to the interaction with other
strong vortices (vortex stripping) and to the effects of Ekman pumping at the bottom
of the tank, thus preventing the formation of large-scale vortices with diameters
comparable to the container size. Additionally, two-dimensional numerical simulations
of oscillating spin-up have been carried out in order to assess the small-scale vorticity
production (which is not possible in the experiments), to vary bottom friction (used to
model Ekman pumping), to distinguish between vortex stripping and Ekman pumping
as the dominant decay mechanism of the vortices, and to explore a different parameter
range from that accessible with the experiments.

In the laboratory experiments, the flow is made quasi-two-dimensional by a steady
background rotation. A small sinusoidal perturbation to the background rotation
leads to the periodic formation of eddies in the corners of the tank by the roll-up
of vorticity generated along the sidewalls. When the oscillation period is greater
than the time scale required to advect a full-grown corner vortex to approximately
halfway along the sidewall, dipole structures are observed to form. These dipoles
migrate away from the walls and fall apart into separate vortices owing to interaction
with other vortices. The interior of the tank is thus continually filled with new
vortices. After certain forcing periods, a sea of vortices emerges in the interior of the
tank. In the present experiment, the production of small-scale vorticity, the subsequent
formation of vortices, and some aspects of the evolution of this system of continuously
interacting vortices are investigated. Moreover, although not pursued in the present
experiments, the set-up allows investigation of the role of bottom drag, which can
be varied systematically, and the study of the interaction of this confined system of
vortices with the lateral no-slip boundaries.

An important effect of no-slip boundaries on the evolution of a (turbulent) flow
field is that if there is a continued input of energy into the system, then dissipation
at the boundaries naturally occurs and the kinetic energy of the flow does not grow
without limit. Thus, in a numerical simulation, a quasi-steady state for the kinetic
energy of the flow can be reached without the introduction of additional sinks such as
Rayleigh damping to dissipate the kinetic energy. Secondly, the injection of filaments
of vorticity and small vortices (after the roll-up of the viscous boundary layers)
represents a source of vorticity whose scale is independent of the forcing scale itself,
but depends on the Reynolds number of the flow and the dimensionless forcing
frequency (i.e. it depends on the thickness of the viscous Stokes boundary layer). In
simulations of a decaying initial distribution of vortices, a similar source can clearly
be seen in spectra where there is a change in the slope of the energy spectrum at the
wavenumber corresponding to the thickness of the viscous boundary layer, kδ . For
k < kδ , the spectrum is characterized by a k−5/3 range, characteristic of the inverse
energy cascade, and for k > kδ there is a k−3 range observed in the kinetic energy
spectrum, characteristic of the direct enstrophy cascade (Clercx & van Heijst 2000).

The paper is organized as follows. In § 2, we describe a laboratory experiment that
is able to inject vortices continuously from the boundary into the interior. Some
simple scaling arguments are then presented to describe the initial size and strength
of these vortices, as a function of the forcing parameters. Experimental observations
of the formation of vortices and their properties are presented in § 3. In § 4, we discuss
results obtained by a direct numerical flow simulation based on the two-dimensional
Navier–Stokes equations in order to improve the understanding of the flow dynamics
observed in the laboratory experiments. These numerical simulations complement
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Figure 1. A sketch of the experimental set-up: a camera is mounted above the table and
rotates in the same reference frame to record the movement of particles or dye. The tank has
a half-width L = 50 cm and height of 30 cm. The fluid layer has a depth H =20 cm. Typical
rotation rates were 1 rad s−1, with a fixed forcing amplitude AΩ0 = 0.06 rad s−1 and frequencies
f in the range 0.031–0.126 rad s−1.

the laboratory experiments, in which quantities such as vorticity, energy spectra and
enstrophy are difficult to measure and in which it is difficult to explore the effects of
large changes in the forcing parameters. Conclusions are summarized in § 5.

2. Experimental design
The laboratory experiments were performed in a tank of square cross-section, with

dimensions 100 × 100 × 30 cm3 (length × width × depth). This tank is mounted on a
rotating table (see figure 1) and the flow is made quasi-two-dimensional by a steady
background rotation of 1 rad s−1 to which a small sinusoidal perturbation is added:

Ω(t) = Ω0(1 + A sin(f t)), (2.1)

where Ω0 is the mean rotation rate, A is the (dimensionless) amplitude of the perturb-
ation and f is the frequency. In a typical experiment, the tank is spun up from rest,
and through the action of Ekman pumping the flow becomes quasi-two-dimensional
after approximately 100 revolutions. The perturbation amplitude is A= 0.06 and the
forcing frequency f is in the range 0.031–0.126 rad s−1. The parameters of all the
experiments that have been conducted are summarized in table 1.

Quasi-two-dimensional flows as found in the present experiments and the two-
dimensional numerical simulations are characterized by three dimensionless numbers
(see also § 4): the Reynolds number; the dimensionless forcing frequency F = f/AΩ0;
and the dimensionless Ekman decay rate. Alternatively, one might use the Rossby and
Ekman numbers and again F. However, keeping in mind the emphasis in the present
investigation on the role of lateral boundary layers and decay by Ekman pumping,
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Experiment A f (rad s−1) F Re α/f

1 0.06 0.031 0.52 15 000 0.161
2 0.06 0.063 1.05 15 000 0.079
3 0.06 0.094 1.57 15 000 0.053
4 0.06 0.126 2.09 15 000 0.040

Table 1. A summary of all the parameters used in the experiments conducted in a
100 × 100 cm2 tank. All experiments reported had a water depth of 20 cm and a mean
rotation rate of Ω0 = 1 rad s−1. The Reynolds number is defined by Re = UL/ν = AΩ0L

2/ν,
with ν = 1 × 10−2 cm2 s−1. The tank half-width L = 50 cm is used for consistency with the
numerical simulations.

the former set of dimensionless numbers is most appropriate. From the definition of
the dimensionless frequency, we can conclude that there is no need to vary f , A and
Ω0 independently, but we should vary F alone. In the present study we have fixed A

and Ω0, with the condition that the flow should behave quasi-two-dimensionally in
the geostrophic interior, and we varied only the forcing frequency f .

In the rotating frame of reference, the fluid oscillates back and forth around the
axis of the tank. A similar set-up, with a slightly different forcing of the fluid in a
rectangular container, was used in experiments by van Heijst (1989) and van de
Konijnenberg et al. (1994) where the rotation rate Ω0 of a fluid spinning in solid-
body rotation was suddenly increased with an amount �Ω0. In the rotating frame of
reference (with angular velocity Ω0+�Ω0), this is equivalent to suddenly changing the
relative vorticity of the flow by an amount δω = −2�Ω0. In this case, an anticyclonic
flow arises in the tank with maximum velocities along the sidewalls. Similar
phenomena are observed in the present experiment, in which the background rotation
rate is changed continuously. In this case the maximum flow velocity, its absolute value
denoted by U , occurs near the sidewalls of the tank and scales with (Ω(t)−Ω0) × L so
that U = AΩ0L, where L is the half-width of the tank. The oscillation acts to provide
a forcing to the vorticity field: the overall relative vorticity changes as δω = −2AΩ0

sin(f t) in the rotating frame of reference.
The induced oscillating flow in the tank is strongly affected by the vertical sidewalls,

which imply the presence of viscous boundary layers that contain high-amplitude vor-
ticity. Near the corners of the tank, the flow may separate and the vorticity produced
in the boundary layer will accumulate in the eddies emerging near the corners,
as observed by van Heijst (1989) and van Heijst, Davies & Davis (1990) for spin-
up flows. These eddies increase in radius with time as the vorticity produced in
the viscous boundary layers is continuously advected toward the corners. The size
and strength of the eddies is affected by both the strength of the vorticity in the
boundary layer (or, stated differently, by the boundary-layer thickness), and by the
time in which the vortex is able to form. Thus as the amplitude of the sinusoidal
forcing AΩ0 is decreased, or the frequency f is increased beyond a certain threshold
value (to be determined later on), weaker or no vortices will form in the corners
of the tank. In experiments with an oscillating flow, on every forcing cycle, vortices
will be formed in the corners of the tank. When the forcing changes direction,
newly formed vortices detach from the corners and travel with the mean flow. These
vortices usually travel approximately halfway along the sidewall, thereby promoting
the detachment and roll-up of the boundary layer. This process results in the formation
of opposite-signed vortices, resulting in the generation of vortex dipoles. It should



Vortices in oscillating spin-up 343

(a) (b)

(c) (d )

+

+

+
+

+

+

+

+

––

+ –

–

–

–

–

–

–

–

+

+

+

+

Figure 2. A schematic cartoon of the formation of dipolar structures in the oscillating flow.
(a) Initially the interior flow can be described as having uniform negative vorticity (−). (b) The
no-slip boundaries lead to the accumulation of positive (+) vorticity in each of the corners
resulting in four vortices. These vortices are then advected by the flow as the forcing changes
sign (c), and can form dipolar structures by pairing with the negative vortices. These dipoles
can then self-propagate into the interior (d).

be mentioned that, for convenience, we assume the formation of dipoles just halfway
along the sidewalls. From the simulations, it can be concluded that this is a realistic
assumption for the range 2000 � Re � 10 000. The low-Reynolds-number simulations,
however, show dipole formation in the corners of the tank whereas the high-Reynolds-
number simulations indicate that dipole formation can occur much more rapidly and
frequently. This has no consequences for the scaling laws to be derived later on,
except for slightly different constants of proportionality. Dipoles are able to move
by self-propagation, so they will move away from the boundaries and thereby fill
the interior with a field of quasi-two-dimensional (columnar) vortices (figure 2). The
remaining part of the boundary layer is advected to the corner of the domain to form
the next corner vortex, so that the process of dipole formation can continue.

The mechanism can be understood by observations of movies from numerical
simulations (an animation of the vorticity field is available as a supplement to the
online version of the paper). Note that while there is a fourfold rotation symmetry
inherently related to the forcing protocol, small perturbations always result in a
symmetry breaking of the flow field.
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Dipoles can be formed in experiments when the time required for a newly formed
vortex to be advected approximately halfway along the sidewall is less than half a
forcing period. The time scale for advection along one side of the tank over a length
L, with a mean velocity

Ū =
f

π

∫ π/f

0

AΩ0L sin(f t) dt = 2U/π,

will be τ = L/Ū = π/(2AΩ0). If this time scale is less than half the oscillation period
T = 2π/f , then a vortex travelling along the side will be able to detach and roll up
a sufficient part of the boundary layer to form an opposite-signed vortex. Hence,
dipoles form if

f

AΩ0

= F < 2. (2.2)

The actual threshold for dipole formation occurs at a slightly lower value of F (for
the experiments with Re= 15 000 the threshold is found for F ≈ 1.7; this value is
also supported by numerical data from two-dimensional simulations, see § 4.1). A
gradual transition is expected to exist between the regimes where dipoles are formed
(F � 1.5), and where they are not formed (F � 2).

The Reynolds number of the forcing is defined as

Re =
UL

ν
=

AΩ0L
2

ν
, (2.3)

where U = AΩ0L, and ν is the kinematic viscosity of the fluid. For typical laboratory
experiments, Re ≈ 15 000. This Reynolds number should not be confused with the
micro-scale Reynolds number based upon the ratio of the circulation |Γv| of the
vortices to the molecular viscosity ν, defined as Rem = |Γv|/ν. As the total circulation
in a bounded flow must be zero, the changes in uniform interior vorticity owing to
the variable rotation rate must be balanced by thin layers with strong vorticity of the
opposite sign that eventually accumulate partly in the corner vortices. Approximately
half of the vorticity in the boundary layer is advected to the corners, the other half
has already been injected into the interior as part of the dipoles. Thus, the circulation
|Γv| in each of these four corner vortices will be one-eighth of the magnitude of the
circulation corresponding to the uniform vorticity over the tank, averaged over half
the forcing cycle, or

|Γv| =
f

π

∫ π/f

0

AΩ0L
2sin(f t) dt =

2

π
AΩ0L

2. (2.4)

This implies that initially Rem � 0.6Re. However, the dissipation during the advection
of vorticity from the thin boundary layer, containing steep vorticity gradients, will
eventually result in weaker vortices than expected. Subsequent interactions between
vortices and damping processes (lateral diffusion, Ekman damping) will often yield
values much smaller than Re for the individual vortices. In our experiments (with
Re ≈ 15 000), initial values of Rem were measured as high as 8000 (consistent with
Rem � 0.6Re ≈ 9000), with the older vortices having lower values, Rem ∼ O(102 − 103).

2.1. Scaling of the size and strength of the corner vortices

The size of the vortices constituting these dipoles can be estimated by considering
the input of vorticity from the Stokes boundary layer through one half of the forcing
cycle. A crude estimate of the boundary-layer thickness δ can be made (see, e.g.



Vortices in oscillating spin-up 345

Kundu 1990),

δ ≈ π

√
2ν

f
, (2.5)

so that the dimensionless boundary-layer thickness scales as δ/L ≈ π
√

2/ReF.
It will be assumed that the vortex grows by advection of the boundary-layer vorticity

and the subsequent roll-up of the detached vorticity filament. The area occupied by
the vortex (radius ρ) after half a forcing cycle is approximately πρ2 ≈ Lδ. Using the
definition of the Reynolds number, (2.3), the radius of the vortices formed in the
corners of the container will scale as

ρ

L
≈

(
2

ReF

)1/4

� 1.19Re−1/4F−1/4. (2.6)

Provided the experiment is in the regime where dipoles can form, i.e. F � 1.5, then
(2.6) provides an estimate of the scale of the vortices injected (as a part of the dipoles)
into the interior.

The relative strengths of the vortices can be estimated from the fact that in a
bounded domain with stationary no-slip walls the circulation Γ for the domain D
must be zero. All the vorticity in the small vortices created after half a forcing
cycle, with total area πρ2, must balance the (lower) vorticity, averaged over half the
forcing cycle, in the rest of the tank. As a first-order approximation, we assume a
parabolic vorticity distribution in the vortices of the form ω(r) = ωmax(1 − (r/ρ)2) for
r � ρ (with ωmax the amplitude of the vortex) and zero elsewhere. The circulation of
such a vortex is |Γv| = 1

2
πρ2|ωmax| =(2/π)AΩ0L

2, where the latter equality results from
applying (2.4). The vorticity in the corner vortices, |ωmax|, and hence the vorticity of
the boundary layers, should thus scale as

|ωmax|
AΩ0

≈ 2
√

2

π2

√
ReF � 0.29

√
ReF. (2.7)

To summarize, as the Reynolds number or the dimensionless forcing frequency
(provided F � 1.5) is increased, the vortices decrease in size (2.6) and increase in
strength (2.7).

The numerical validation of relations (2.6) and (2.7), to be discussed in § 4 (the
simulations without bottom friction), reveal that

ρmean

L
≈ 1.5Re−1/4F−1/4,

|ωmean|
AΩ0

≈ 0.23
√

ReF, (2.8)

thus with the same scaling as predicted by (2.6) and (2.7), but with slightly different
constants of proportionality. Note that ωmean is not exactly the same as ωmax; the former
is an average obtained from numerical data as explained in § 4.3 and the latter is the
maximum amplitude of the vortices. Necessarily, |ωmean| � |ωmax|, owing to the effects
of horizontal diffusion when vortices travel to the interior of the domain, although the
same scaling with respect to Re and F is anticipated. Similarly, ρmean is an average and
(2.8) indicates that ρmean � ρmax, as expected when again taking horizontal diffusion
into account. The average vortex radius (ρmean) and vortex amplitude (|ωmean|) can thus
be accurately predicted. One should, however, keep in mind that, in particular, the
amplitude of the vortices in the experiments have decreased substantially before they
can be resolved experimentally owing to horizontal diffusion and, possibly, Ekman
damping.
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Three-dimensional effects arise in rotating flows owing to the presence of Ekman
boundary layers at horizontal domain boundaries, which lead to Ekman pumping
and decay of circulation in the vortices. The Ekman decay time scale is given by
TE = H/

√
νΩ0. A clear separation between the forcing period and the Ekman decay

time scale requires that TE � 2π/f . In the regime where dipoles form, F � 1.5,
the condition Ro =U/(2Ω0L) = A/2 � 1 in order to have a quasi-two-dimensional
flow, implies TE � 2π/f (note that in the experiments discussed later in this paper
Ro = 0.03 � 1). For example, in our experiments, the period of oscillation 2π/f is
typically between 50 and 200 s, and a typical Ekman decay time scale is about 200 s
(with Ω0 = 1 rad s−1, H = 0.20 m and ν = 10−6 m2 s−1).

3. Laboratory results
The formation of dipoles in experiments with F � 1.5 is most easily visualized by

the rapid stirring of dye (figure 3). In this experiment, f = 0.031 rad s−1 (T = 200 s),
AΩ0 = 0.06 rad s−1, so that F =0.52, corresponding with a regime in which strong
dipole formation is expected. A small amount of fluorescein dye was initially injected
near the bottom left-hand corner. After t/T = 0.025, the flow has sheared and
stretched this dye blob along one wall of the tank, and several vortices have started
to stir at smaller scales. A subsequent image at t/T = 0.125 (figure 3b) shows that the
dye has been sheared around the complete perimeter of the tank, and two dipolar
structures are beginning to transport dye into the interior. Once dye has reached the
interior of the tank, it is rapidly mixed by the field of vortices. In figure 3(c), about
15 circular structures in the dye streaks can be observed, which indicate the presence
of localized vorticity in the interior. These vortices result in almost complete mixing
of the dye by t/T =0.325 after its injection (figure 3d).

To understand the importance of the dipole formation process in determining the
amount of mixing in the tank, it is useful to consider an experiment where strong
dipoles did not form. The experiment illustrated in figure 4 had a forcing frequency
of f = 0.126 rad s−1, AΩ0 = 0.06 rad s−1, so that F = 2.09. Dye was injected into the
flow in a similar manner to that in figure 3. After t/T = 3.6, the dye was well mixed
around the perimeter of the tank, but the central portion of the container remained
free of dye. Flow separation has still taken place in the corners, and the resulting
vortices can be observed in the dye filaments, but because of the high oscillation
frequency, these vortices were unable to form dipoles which could have rapidly left
the wall region.

The images in figures 3 and 4 show that the size of these vortices is about 10–15 %
of the width of the tank. In other experiments in which the parameters f and AΩ0

were changed systematically to modify the relevant dimensionless numbers Re and F,
qualitative agreement with (2.6), in that the vortex size decreases with increasing F
and Re, has been observed. Because of difficulties in spanning a large range of forcing
parameters and still maintaining a quasi-two-dimensional flow field in the laboratory
experiments, a quantitative experimental comparison with the scaling relations (2.6)
and (2.7) has not been made. Validation of these scaling relations will be based on
numerical evidence (see § 4.2).

3.1. Particle tracking

During an experiment, the motion of tracer particles is monitored by a digital
camera in order to determine the velocity field. The images are recorded onto a
computer and after the experiment, the Lagrangian trajectories of the particles are
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Figure 3. A sequence of laboratory photographs of a dye tracer showing the turbulent field
of vortex structures. (a) t/T = 0.025 after dye has been injected in the corner of the tank,
(b) t/T =0.125, (c) t/T = 0.175, and (d) by t/T = 0.325 the dye has been well mixed in the tank,
and the vortex structures are clearly visible. In this experiment F = 0.52, f = 0.031 rad s−1 (so
that T = 2π/f =200 s) and Re =15 000 (experiment 1, table 1). An animation of this experiment
is available as a supplement to the online version of the paper.

determined using the particle-tracking algorithm developed by Bastiaans, van der
Plas & Kieft (2002). An SMD-1M15 CCD camera with 1024 × 1024 pixels and 12
bit grey-scale resolution allowed high-quality images to be obtained at a rate of 5
frames per second. After using the particle-tracking algorithm, typically, 9000 particles
could be tracked to allow interpolation of the velocity field to an 80 × 80 grid with
about 1 cm2 resolution. Figures 5(a) and 5(b) show velocity vectors (indicating the
streamlines) and vorticity contour plots from an experiment with AΩ0 = 0.06 rad s−1

and f = 0.031 rad s−1. This implies a forcing scale Reynolds number of Re= 15 000
using (2.3) and a dimensionless frequency F =0.52. In figures 5(a) and 5(b), small
individual vortices, with |ωmean| � 0.8–0.9 s−1 and ρ/L � 0.15, are visible in the vorticity
contour plots which are advected by the mean background flow. The observed
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Figure 4. A photograph taken approximately four oscillation periods after dye has been
released for an experiment with F =2.09 (Re= 15 000, experiment 4, table 1). In contrast
to the previous figure the dye is not well mixed and has been transported only around the
perimeter of the tank. This is due to the forcing parameters having F sufficiently larger than
unity so that dipoles could not form efficiently.

ratio |ωmean|/AΩ0 � 14, somewhat smaller than the predicted ratio (2.8), which gives
|ωmean|/AΩ0 � 20. This is most probably due to the diminished separation between the
forcing and Ekman time scales T and TE , respectively, resulting in rapid decay of the
vortices by Ekman pumping (see § 4.4). For these strongest vortices, the micro-scale
Reynolds number can be estimated as

Rem = |Γv|/ν ≈ 1
2
|ωmax|πρ2/ν =

π

2

|ωmax|
AΩ0

(
ρ

L

)2

Re � 8000,

in reasonable agreement with the prediction Rem ≈ 0.6Re � 9000; the other weaker
vortices visible in figure 5 would have Rem ∼ 102–103.

In figures 5(c) and 5(d), velocity vectors and vorticity contours from an experiment
with AΩ0 =0.06 rad s−1 and a higher forcing frequency, f =0.094 rad s−1 (i.e. F=1.57)
are shown. The peak vorticities shown in figure 5(d), namely, |ωmean| � 0.8 s−1 (or
|ωmean|/AΩ0 � 13), are smaller than predicted by the ratio, (2.8), |ωmean|/AΩ0 � 35.
This discrepancy might be a consequence of the lack of experimental resolution for
observing the small strong vortices just formed after the roll-up of the detached
boundary layers. Observation at later stages unavoidably results in lower vorticity
maxima due to horizontal diffusion and is supported by

Rem ≈ π

2

|ωmax|
AΩ0

(
ρ

L

)2

Re � 4500

(with ρ/L � 0.12), thus substantially smaller than the prediction Rem ≈ 9000.
The vortices are clearly smaller in figure 5(d) than in figure 5(b). The difference

in size of the vortices in these two experiments was predicted by (2.8) to scale as
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Figure 5. Graphs showing the flow field in the form of velocity vectors (a, c) and vorticity
distributions (b, d) obtained by particle-tracking velocimetry in an experiment with Re= 15 000
and F = 0.52 (a, b) and 1.57 (c, d) (experiments 1 and 3, respectively, in table 1).

ρ1/ρ3 = (f3/f1)
1/4 � 1.32 (with the index denoting the experiment, see table 1), which

is consistent with the observed scales in figures 5(b) and 5(d). From visual inspection,
the characteristic vortex sizes were about 15 cm wide in figure 5(b) and about 12 cm
in figure 5(d). The corresponding predictions for the average vortex sizes via (2.8) are
16 cm and 12 cm, respectively.

3.2. Energy and passive scalar spectra

Figure 6 shows the energy spectrum E(k) calculated from laboratory data shown in
figures 5(c) and 5(d). For this purpose, data from a two-dimensional fast Fourier
transform (FFT) of the kinetic energy of the flow is collapsed onto a one-dimensional

graph by computing the energy spectrum according to E(k) =
∫ k+1

k
E(κx, κy) dκ , where

κ = (κ2
x + κ2

y )
1/2. To reduce the influence of the non-periodic boundary conditions of

the velocity field, and thus the non-periodicity of the kinetic energy fields in these
images, the mean (i.e. the area-averaged or total kinetic energy) is subtracted from the
data and a Hanning window is applied before the Fourier transforms of the kinetic
energy data were computed. The experimentally observed energy spectrum at large
wavenumbers appears to decay as E(k) ∼ k−5/3. The forcing scale is assumed to be
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Figure 6. The measured energy spectrum for the laboratory experiment shown in figure 5(c),
with Re= 15 000 and F = 1.57 (experiment 3, table 1). The spectrum has a slope similar to
k−5/3 at high wavenumbers, consistent with an inverse energy cascade. Spectra are shown for
two different phases of the forcing cycle. To reduce the influence of the non-periodic boundary
conditions, the mean was subtracted from the data and a Hanning window was applied before
the Fourier transforms of the kinetic energy data were computed.

comparable with the thickness of the viscous boundary layer. Although for the present
laboratory experiments, the flow visualization system and particle-tracking algorithm
can resolve velocity scales down to 5 mm, which is slightly smaller than the predicted
thickness of the Stokes boundary layer (in this case, with Re =15 000 and F =1.57,
the layer thickness is δ ≈ 1.5 cm), we were unable to obtain the energy spectrum at
these small scales. The smallest wavelength represented in the energy spectrum shown
in figure 6 is approximately 3 cm. Numerical simulations of this experiment, which
will be discussed in § 4, are conducted with a substantially higher resolution and we
will be able to discuss the existence of a k−3 spectral slope beyond the injection scale
for this kind of experiment (assuming weak or even absence of decay due to Ekman
pumping).

In figure 7(a) a one-dimensional scalar intensity spectrum F (k) =
∫ k+1

k
F (κx, κy) dκ

is shown, using a two-dimensional Fourier transform of the pixel intensity of images
of fluorescein dye in a turbulent field. To reduce the influence of the non-periodic
boundary conditions of the tracer concentration in these images, a similar procedure
is used as before. The mean (i.e. the area-averaged) tracer concentration is subtracted
from the data and a Hanning window is applied before the Fourier transforms are
performed. An example of the images used for this spectrum is shown in figure 7(b)
at t/T = 1 after the introduction of the dye. To illuminate the tank we used four slide
projectors placed around the square tank, thus illuminating a 1 cm surface layer. In
the following analysis, we focus on the central 512 × 512 pixels of the images, which
represents a quarter of the total area of the tank. Pragmatic reasons force us to focus
on this region in order to minimize any parallax errors in viewing the vertically aligned
dye-sheets in the rotating flow. The data shown in figure 7 were taken from a sequence
of images, t/T = 0.1 apart, in an experiment with F = 1.05 (AΩ0 = 0.06 rad s−1 and
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Figure 7. A sequence of measured intensity spectra of fluorescein dye in the turbulent flow
field is plotted in (a) from images similar to that shown in (b). The spectra in (a) and the
image in (b) is obtained from measurements in the central 50 cm × 50 cm of the tank in an
experiment with Re= 15 000 and F =1.05 (experiment 2, table 1). The spectra have a slope
similar to k−1 at high wavenumbers. The mean tracer concentration was subtracted from the
data and a Hanning window was applied before the Fourier transforms were performed.
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f = 0.063 rad s−1, a forcing period of T = 100 s). Although F is slightly different for
both experiments discussed here (and the Reynolds number the same), the average
boundary-layer thickness and the wavenumber for the anticipated change from a
k−5/3-range to a k−3-range, is approximately the same for both experiments. After the
experiment had run for 10 min, 5 ml of fluorescein dye was injected into the surface
layer of water in one corner of the tank. The striking feature of figure 7(a) is the
k−1 power-law behaviour of the spectra, consistent with the predictions of Batchelor
(1959). Apparently, the overall intensity of the dye, initially introduced in the surface
layer, shows a gradual decrease. This is attributed to the recirculating flow induced
by Ekman pumping. This results in average upward transport of undyed fluid in the
vortex cores and an accompanying average downward transport of dyed fluid to the
bottom. Once dye is removed from the surface layer it will not be detected.

Theoretically, a k−1 power law of the scalar spectrum should occur in the same
spectral range as the enstrophy cascade of the energy spectrum. It was impossible to
resolve a high-wavenumber enstrophy cascade from the velocity measurements, but
we note that the k−1 power law occurs at wavenumbers k � 80 m−1, which is in the
region where such an enstrophy cascade is indeed expected.

4. Direct numerical simulations of oscillating spin-up
In a co-rotating frame of reference, the effect of a time-dependent uniform

background rotation, is described by a forcing term k · ∇ × (dΩ/dt × r) = 2 dΩ(t)/dt ,
with k = Ω/|Ω | the unit vector in the axial or z-direction, in the vorticity equation:

∂ω

∂t
+ (v · ∇)ω = ν∇2ω − 2AΩ0f cos(f t), (4.1)

where the relation Ω(t) = Ω0(1 + A sin(f t)) is used, v = (u, v) and ω = ∂v/∂x − ∂u/∂y

is the axial component of the vorticity (with x and y the Cartesian coordinates).
The numerical simulations are performed with a Chebyshev pseudospectral code

developed by Clercx (1997). The computational domain D is the square [−1, 1] ×
[−1, 1] with boundary ∂D. On this domain, the vorticity equation in the co-rotating
frame of reference can be written in the dimensionless form

∂ω

∂t
+ (v · ∇)ω =

1

Re
∇2ω − 2F cos(Ft), (4.2)

where time has been made dimensionless with AΩ0. The Reynolds number is defined
as in (2.3). The vorticity equation (4.2) must be solved in combination with the
relations

∇2v = êz × ∇ω on D, (4.3)

êz · ∇ × v = ω on ∂D, (4.4)

v = 0 on ∂D. (4.5)

The time discretization of the vorticity equation consists of a second-order explicit
Adams–Bashforth scheme for the advection term and an implicit Crank–Nicolson
procedure for the diffusion term.

In figure 8, the vorticity field is plotted for F = 1.25. The Reynolds number is
Re= 20 000 in figure 8(a) and Re = 5000 in figure 8(b). Full details of all numerical
parameters are given in tables 2 and 3; the results from runs 44 and 29 are shown
in figure 8. The fields are seeded with the initial noise required to remove the
fourfold rotation symmetry present owing to the forcing protocol. This was done
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Figure 8. Vorticity distributions obtained by numerical simulations representing the flow at
t =50 (after approximately 10 forcing periods), showing the turbulent vorticity field for (a)
Re =20 000 and (b) Re= 5000 for F =1.25. Note the smaller vortex size at larger Re. In
both figures many filaments, detached from the boundaries or from strained vortices, can
be observed, and no large-scale (i.e. domain-filling) vortex structures are absent. These two
simulations are runs 44 and 29, respectively, in table 3.

Re N �t

500 120 5.0 × 10−4

1000 160 2.5 × 10−4

2000 160 2.5 × 10−4

5000 200 2.0 × 10−4

10 000 288 1.0 × 10−4

15 000 324 8.0 × 10−5

20 000 400 5.0 × 10−5

Table 2. A summary of all numerical parameters used in the simulations discussed in the
paper. N denotes the order of Chebyshev polynomials used in the expansion (corresponding
to a resolution (N + 1)2) and �t denotes the time step of the simulation. All simulations have
run 50 dimensionless time units, i.e. approximately 8F forcing periods.

by applying random noise of amplitude 0.01 to the initial vorticity field in the first
10 × 10 Chebyshev modes. The predicted thickness of the boundary layer by (2.5)
for Re =20 000 (figure 8a) is half that of Re= 5000 (figure 8b). In both cases, there
are regions near the boundaries where new vortices are formed by the separation
and roll-up of the boundary layer. The difference in size of the emerging vortices is
then directly related to the difference in boundary-layer thickness – hence the larger
vortices are seen in the simulation with Re = 5000. As the maximum vorticity for
fixed F scales with the square root of the Reynolds number by (2.7), the averaged
maximum vorticity values of the vortices near the boundaries in figure 8(a) are
expected to be approximately twice those observed in figure 8(b). This is indeed
observed, |ωmax|/AΩ0 ≈ 50 and 25, respectively.

An interesting aspect of these numerical experiments is the presence of strong
filaments of vorticity, which we were unable to resolve in the laboratory measurements.
Some of these filaments in figure 8 are in the process of roll-up to form new vortices,
others are due to vortices interacting with the wall and creating new filaments from the
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Run Re F |ωmean| ρmean/L Run Re F |ωmean| ρmean/L

1 500 0.05 1.61 0.403 23 5000 0.05 3.11 0.329
2 0.10 3.10 0.390 24 0.10 6.65 0.290
3 0.20 4.61 0.338 25 0.20 7.95 0.248
4 0.50 5.17 0.311 26 0.50 9.75 0.211
5 0.80 5.23 0.295 27 0.80 14.4 0.189
6 1.00 5.98 0.288 28 1.00 16.0 0.173
7 1.25 6.86 0.295 29 1.25 17.5 0.160
8 1.50 6.72 0.307 30 1.50 15.3 0.159
9 1.75 6.50 0.317 31 1.75 15.0 0.163

10 1000 0.05 1.66 0.399 32 10000 0.20 11.6 0.207
11 0.10 4.64 0.352 33 0.50 20.5 0.184
12 0.20 4.59 0.312 34 0.80 23.1 0.158
13 0.50 6.44 0.285 35 1.00 23.0 0.148
14 0.80 7.09 0.263 36 1.25 22.9 0.143
15 1.00 8.34 0.241 37 1.50 22.7 0.130
16 1.25 9.92 0.249 38 1.75 20.0 0.137

17 1.50 8.66 0.267 39 15000 0.80 21.3 0.145
18 1.75 8.75 0.301 40 1.00 25.4 0.130

19 2000 0.50 7.75 0.253 41 20000 0.50 27.1 0.143
20 0.80 9.56 0.225 42 0.80 32.3 0.127
21 1.00 10.0 0.214 43 1.00 30.2 0.116
22 1.25 11.1 0.200 44 1.25 26.6 0.121

45 1.50 27.0 0.116

Table 3. A summary of the parameters used in the simulations discussed in the paper (with
the dimensionless Ekman decay rate A = 0). F represents the dimensionless forcing frequency.
The last two columns represent the dimensionless mean vortex amplitude, |ωmean|, and the
average vortex radius, ρmean/L, respectively.

wall, and some are due to vortex–vortex interactions where vorticity can be stripped
off the perimeter of a weaker vortex by a strong vortex. These weak filaments of
vorticity are eventually destroyed by viscous dissipation.

4.1. The threshold for dipole formation

In § 2, we introduced a condition for dipole formation: F < 2. We also briefly
discussed experimental evidence that dipole formation actually occurs for F � 1.7.
Both the presence and the approximate value of the threshold for dipole formation
is confirmed by the numerical simulations (for the values of Re and F, see table 3).
From these simulations we determined the (dimensionless) enstrophy of the interior
of the domain,

Vint(t) = 1
2

∫ 0.75

−0.75

∫ 0.75

−0.75

ω2(x, y, t) dx dy.

The boundary layers, biasing the enstrophy by the large-amplitude vorticity present
near the no-slip walls, are automatically excluded in determining Vint(t). The sudden
increase of Vint(t) in the course of time is associated with the emergence of vortex
structures in the centre of the container, thus indirectly indicating dipole formation.
The interior enstrophy is computed for each dimensionless time unit. Note that the
sinusoidal forcing is reflected in the oscillations of Vint(t).

We have plotted Vint(t) for F = 0.2, 0.5 and 1.0 (figure 9a) and for F = 1.0, 1.5
and 2.0 (figure 9b) obtained from runs with Re= 5000. Similar results are available
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Figure 9. Time evolution of Vint(t) for numerical simulations with Re= 5000. (a) data for
F =0.2, F =0.5 and F = 1.0, (b) data for F = 2.0, F = 1.5, and (for reference) F =1.0.

for the runs with different Reynolds number (provided Re � 2000), but they are not
shown here. In particular, for F = 0.5 and 1.0, we observe a sudden increase of Vint

after approximately two forcing periods. For F = 1.5, a substantial increase of Vint

can still be seen, but dipole formation seems to be delayed and the resulting dipoles
are weaker; for F = 2.0, no increase of Vint is observed beyond the weak oscillatory
variation in time. Finally, the low-frequency case (F = 0.2) does not indicate clear
dipole formation yet. Apparently, the total number of forcing periods (less than two)
was too small to observe appreciable dipole formation.

Finally, figure 10 shows the time-averaged value of V int for three different Reynolds
numbers (2000, 5000 and 10 000) and F � 2.0. From these data, we can conclude
that V int strongly decreases for F � 1.0. Moreover, combining the scaling relations
from (2.8) indicates that V int ∝ ReF, a trend clearly visible in figure 10 with the
initial linear increase in V int for F � 1, and with the magnitude of V int increasing
with Re. Note again that for small F, the number of forcing periods in the numerical
simulations is presumably too small, which also leads to the reduced values for V int.

We can conclude here that the numerical data shown in figures 9 and 10, together
with a few available experimental observations, clearly support our estimate of the
threshold of dipole formation put forward in § 2.

4.2. The average vortex size

A measure of the average vortex size in the turbulent flow is required to test the
scaling relation ρmean/L ∝ (ReF)−1/4. The mean-square wavenumber of the vortices
can be estimated straightforwardly by the ratio of enstrophy V = 1

2

∫
D ω2 dA and

energy E = 1
2

∫
D u2 dA, and yields 〈k2〉 ∼ V/E. The average radius of the vortices

is then ρmean ∼ 1
2
λ∼ πL

√
E/V , with λ= (2π/k)L the mean wave length in the flow.

Strictly speaking, the estimates for 〈k2〉 and λ are valid for homogeneous and isotropic
turbulence, which is not the case in the present numerical experiments. Nevertheless,
we assume that it is legitimate to apply these estimates for 〈k2〉 and λ to obtain
estimates for ρmean.

The highest enstrophy values are found in the boundary layers. The presence of
boundary layers implies the existence of a characteristic wavenumber kδ which scales
with

√
Re. If the size of the eddies in the interior has to be estimated, a thin boundary

region of thickness ε � 1/kδ is excluded from the calculation of the enstrophy. If this
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Figure 10. The average interior enstrophy V int is plotted as function of F with F � 2.0. Three
different Reynolds numbers are considered: Re= 2000, Re= 5000 and Re= 10 000. Based on
the scaling arguments of (2.8), we expect that V int will increase linearly with both Re and F,
as observed for F < 1. For 1 < F < 2, V int decreases as dipoles become more difficult to form,
until V int = 0 at F = 2, as predicted by (2.2).

correction is not used, the wavenumber estimated by k ≈
√

V/E then predominantly
represents the smaller thickness of the boundary layer, rather than the average size
of the vortices, owing to the extremely high vorticity values in the boundary layers.
This can easily be shown by the following estimate. The vorticity in the interior, ωi ,
is proportional to the forcing, ωi ≈ 2AΩ0, which yields for the associated enstrophy:
Vi ≈ 8(AΩ0L)2. The vorticity in the boundary layers is estimated to be ωmax ≈ AΩ0L/δ,
and the enstrophy in the boundary layer is Vδ ≈ 4Lδω2

δ . It can be concluded that

Vδ/Vi ≈ L/(2δ) ∝
√

Re, and Vδ will largely dominate the total enstrophy and thus also
the computed value of 〈k2〉 if no correction is taken into account.

The observed size of vortices formed for various Re and F is plotted against
the theoretical prediction ρmean/L ∝ (ReF)−1/4 in figure 11, yielding the constant
of proportionality used in (2.8). The data used in this figure are from the runs
summarized in table 3. When the vortices are small, there is good agreement with
the theoretical prediction. Deviations are observed for the low-Reynolds-number runs
only, i.e. Re = 500 and 1000; in these cases, the new vortices occupy nearly a quarter
of the tank each and the scaling argument leading to predictions of the vortex size
and amplitude as function of Re and F might be invalidated. On average, the vortex
sizes computed according to our definition are slightly less than the predicted value.

The observation that the maximum size of the eddies scales with their initial size
implies that there are very few interactions between vortices that lead to merger and
the formation of larger-scale vortices, and that on average the ageing vortices are
actually destroyed by the younger ones. The mergers that are observed in the numerical
simulations happen in conjunction with a considerable amount of filamentation
induced by neighbouring vortices and by the background shear. No substantial
increase in size is observed after a (partial) merger.
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Figure 11. Plot of the vortex size for varying Re and F. Shown are results from numerical
experiments using ρ/L ∼ π

√
E/V . The parameters used for the simulations are summarized

in table 3. For either high Re and larger F, small vortices form, and their size appears to
be in good agreement with theory (straight dashed line). When larger vortices form (low Re
or the smaller values of F) the observations diverge from the scaling relation (2.8). This is a
finite-size effect allowing a minimum of four vortices in the tank. The maximum vortex sizes
observed in the numerical simulations, as well as in the experiments shown in figures 3 to 5,
were always ρ/L < 0.5.

4.3. The decay of vortices

Vortices decrease in size when filaments of vorticity are stripped off during strong
shearing events (Mariotti, Legras & Dritschel 1994; Dritschel & Zabusky 1996;
Trieling, Beckers & van Heijst 1997). Many such filaments can be seen in figure 8,
where weaker vortices formed on previous cycles (older vortices) are being destroyed
by the new set of vortices. To illustrate how individual vortices decrease in size and
strength with time in the numerical simulation, several vortices were tracked after
they formed in the corners of the tank and the change in their size and circulation was
recorded as a function of time. There is some difficulty in distinguishing between the
high-vorticity regions of the rotationally dominated vortex cores and the filaments of
vorticity being stripped off by background shear. One way to identify the vortex cores
is to distinguish between regions that are locally dominated by rotation (the vortex
core) and regions that are dominated by strain. For this purpose, we can use the
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criterion proposed by Okubo (1970) and Weiss (1991). Regions of the flow dominated
by either rotation or strain can be distinguished by the sign of the quantity,

Q = S2 − ω2, (4.6)

where S is a measure of the local strain and defined as S = −det(∇v + ∇vT ). The
regions of the vortex cores, which are dominated by rotation, have Q < 0, while
the surrounding strain dominated regions have Q > 0. In flows with strong vortex
filaments, a stronger criterion is required. The method we have used to identify vortices
is illustrated in figure 12, where results are plotted from a numerical simulation with
Re= 15 000 and F =1.00 (run 40 in table 3). Figures 12(a) and 12(b) show the vorti-
city field and the Okubo–Weiss function Q, respectively. Figure 12(c) shows the
vorticity field, which is overlain by contours identifying the coherent structures. These
contours bound the regions where Q < −150 and |ω| > 5. A geometric criterion was
also used to elimate strong vortex filaments by requiring that the vortices must be
approximately circular. This was achieved by comparing the second moment of the
distribution of vorticity inside a contour to the second moment of a uniform circular
distribution of the same pixel area; if this ratio is greater than 2, then the structure
is too long and filamental, and is hence rejected.

The trajectories of approximately 50 vortex centres observed in the run with
Re= 15 000 and F = 1.00 (followed for a period of 1.5 forcing cycles) are shown
in figure 13(a). The average value of the vorticity within the vortices is plotted in
figure 13(b) as a function of time, and we can see that on average the vortex amplitude
decreases with time. Nevertheless, a well-defined mean value can be extracted,
|ωmean| ≈ 25. The average initial radius of these vortices is around (0.12 ± 0.04)L
(consistent with data in table 2, run 40). The absolute value of the ratio of maximum
initial circulation of these vortices, to the maximum circulation due to the forcing
is approximately one-eighth, as predicted and Rem ≈ 0.57Re, close to the predicted
Rem ≈ 0.6Re. This is consistent with the ideas put forward in § 2.1 that every period,
eight new vortices are formed such that their total circulation is equal and opposite
to the circulation induced by the forcing.

Figure 14 presents values of the average vorticity within coherent vortex structures
for the numerical experiments 1–45 (table 3) and the results are compared with the
theoretical prediction |ωmean|/AΩ0 ∝

√
ReF. The magnitude of the average vorticity

in the vortex structures is calculated by identifying the vortex structures in each run
in the same manner as shown in figure 12(c). As noted in figure 13(b), there is a well-
defined mean to the vorticity in these flows, and figure 14 shows a good agreement
of the measured values of |ωmean| with the predicted scaling.

For comparison, the two experimental observations, taken from figures 5(b) and
5(d), are plotted as well. The measured value of |ωmean| from these experiments shows
good agreement with the numerical simulations (keeping corrections in mind owing
to Ekman decay).

4.4. The effects of Ekman damping

The effect of Ekman pumping in numerical simulations of two-dimensional flows can
be modelled by including a linear damping term in the two-dimensional vorticity
equation (4.2) (see Pedlosky 1987) to give,

∂ω

∂t
+ (v · ∇)ω =

1

Re
∇2ω − 2F cos(Ft) − Aω. (4.7)
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Figure 12. (a) The distribution of the vorticity ω, and (b) the Okubo–Weiss function Q, which
is used as a criterion for determining the size of the vortex cores. In (c) contours defining
the extent of the coherent structures (with Q < −150 and |ω| > 5) are overlain on the vorticity
distribution. This numerical simulation was carried out for Re= 15 000 and F =1.00 (run 40,
table 3). An animation of the vorticity in this numerical simulation is available as a supplement
to the online version of the paper.
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Figure 13. The trajectories of approximately 50 vortices of the numerical simulation shown
in figure 12 are plotted in (a) over a period of 1.5 forcing cycles. The vortex amplitudes as a
function of time are plotted in (b). The mean values of the vorticity within a vortex can be seen
to start quite high (ω = ±50–60) before rapidly decaying to values in the range ω = ±20–30.
Ekman damping is absent in this run, so this decay of the mean vorticity is due to lateral
diffusion and vortex stripping only.

Here, the linear Ekman pumping decay rate α = 1/TE is non-dimensionalized using
A =αL/U = α/(AΩ0) and F = f/(AΩ0) (note for comparison with the experiment:
A/F = α/f ). It was observed that even without a linear damping term, the kinetic
energy of the two-dimensional turbulent flow reaches a statistically steady value,
owing to the no-slip boundary conditions. Inclusion of the linear damping term
will lead to more rapid destruction of vortex filaments generated at the boundary
and will result in lower mean energies and lower peak vorticity in the vortex cores.
In laboratory experiments, the effect of Ekman pumping may be important for
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Figure 14. A comparison of the mean vortex amplitude obtained from the numerical
simulations (table 3) and the laboratory experiments 1 and 3 from table 1 with the theoretical

prediction that |ωmean| ∝
√

ReF. The mean vorticity is computed with the procedure explained
in figures 12 and 13. The data show good agreement with the theoretical prediction. Data
from laboratory experiments are taken from figure 5. The laboratory experiments are affected
by Ekman damping (in particular experiment 3) so have lower values of mean vorticity than
those from numerical simulations where Ekman damping is absent.

the vortex dynamics, so this process has been explored using a series of numerical
experiments in which the decay rate A is increased relative to the forcing frequency
F. These simulations were carried out for Re= 15 000 and F = 1.00, a regime
comparable to the laboratory experiments 1–3 of table 1 (with F = 0.52, 1.05 and
1.57, respectively). The following range of dimensionless Ekman decay rates have been
used: A =0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.40 and 0.60 (see table 2 for
details of the numerical parameters). The resulting vorticity distribution at t/T =50
is shown in figure 15 for six different cases in which the ratio A/F is varied from 0
to 0.60. The first case with no damping (A/F = 0, figure 15a) shows strong vortex
interactions and the presence of vorticity filaments. The maximum absolute values of
vorticity are about 40 and the flow is highly disordered. As the damping is slowly
increased from A/F = 0.02, through A/F = 0.06, to A/F = 0.10 (figure 15b–d),
vortices are still seen to form and the flow appears turbulent, but the maximum
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Figure 15. Vorticity distributions for different values of A/F with Re= 15 000 and F = 1.00
at t/T =50. The values of A/F used in the displayed vorticity fields of the simulations are
(a) 0, (b) 0.02, (c) 0.06, (d) 0.10, (e) 0.20 and (f ) 0.60. Simulations with A/F = 0.06 and 0.10
are comparable to the experiments shown in figure 5. Details of the numerical parameters can
be found in tables 2 and 4.

vorticity values (in particular the older vortices that have moved to the interior of
the flow domain) and the number of vorticity filaments decrease. When A/F = 0.20,
see figure 15(e), the damping causes a substantial decrease in the strength of vortices
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from one period to the next, such that vortex–vortex stripping interactions are no
longer the principal determinant of the vortex size, and the Ekman decay is becoming
dominant. As the vortex interactions are suppressed, we also note that the symmetry
of the underlying forcing can be seen in the resulting vorticity distributions. When
A/F = 0.60, the damping is so strong that the vortices cannot form and the only
strong vorticity present is near the no-slip boundaries (see figure 15f ).

In figures 11 and 14 we have plotted the vortex size and amplitude (the triangles in
these figures), respectively, obtained from these numerical simulations (with fixed Re
and F) for varying dimensionless Ekman decay rate A. From these data we can con-
clude that for Re =15 000 and F = 1.00 the data with A � 0.15 are very similar to
those from the runs without Ekman decay. From this comparison, we may conclude
that the effects of the Ekman decay rate on ρmean and ωmean in the experiments are
small.

The reduction of dipole formation as a result of Ekman damping is also illustrated
well by plots of Vint(t) and V int for several values of A/F. In figure 16(a), we have
shown Vint(t) for A/F = 0.00, 0.02, 0.04 and 0.08. In figure 16(b), we have displayed
similar data, but now for A/F = 0 (for reference), 0.10, 0.20 and 0.40. Finally,
figure 16(c) shows the decrease of V int with increasing A. The decay is exponential
for A/F � 0.20.

For comparison, the laboratory experiments illustrated by the images shown in
figures 3 to 5 had a forcing frequency of f = 0.031–0.126 rad s−1 (T = 200 to 50 s) and
an Ekman decay period of 200 s using TE =H/

√
νΩ0 with H = 20 cm, ν = 1 ×

10−2 cm2 s−1 and Ω0 = 1 rad s−1 so that 0.04 < A/F < 0.16 (note that by definition
A/F = α/f ). This small ratio indicates, keeping in mind the results of our numerical
simulations with Ekman damping (figure 15), that linear Ekman decay is not the
most important process in the laboratory experiments. The vorticity plots shown in
figures 5(a) and (b) had A/F = 0.053 and in figures 5(c) and 5(d) A/F = 0.161,
so they are comparable to the simulations shown in figures 15(c) and 15(d). There
is also good agreement between the numerically obtained vorticity maxima and the
observed values in the laboratory experiments. For laboratory experiments 1 and 3,
dimensionless vorticities of |ωmean|/AΩ0 ≈ 13–14 were observed, which are comparable
with the numerical values of |ωmean|/AΩ0 ≈ 12–19, as given in table 4 for the runs with
Re = 15 000, F = 1.00 and different values of the dimensionless bottom friction A.

4.5. Energy spectra from numerical simulations

Figure 17 shows phase-averaged kinetic energy spectra (based on Chebyshev expan-
sion coefficients), obtained by numerical simulations of forced turbulence for Reynolds
numbers Re1 = 5000, Re2 = 10 000, Re3 = 15 000, and Re4 = 20 000, respectively, and
F = 0.80 (for all four runs). Note that a k−n Fourier spectrum results in the
same power-law Chebyshev spectrum; a direct comparison of Fourier spectra and
Chebyshev spectra is thus allowed. These are the runs 27, 34, 39 and 42, respectively, in
table 3 (for the resolution of these runs, see table 2). The non-dimensional boundary-
layer thickness scales as

√
Re (it should be noted that F = 0.80 in these runs), so it is

expected that the ratio of the boundary-layer thicknesses from the four simulations
should scale as

√
Re4/Re1 = 2.0,

√
Re3/Re1 = 1.7 and

√
Re2/Re1 = 1.4. The displayed

spectra in figure 17 clearly indicate that the ‘knee’ where the slope changes from
k−5/3-like to k−3-like behaviour lies at approximately k = 90 (Re1), 130 (Re2), 170
(Re3), and 200 (Re4), i.e. at ratios similar to those predicted.

The phase-averaged energy spectra from the numerical simulations with Ekman
damping are plotted in figure 18(a). The laboratory experiments were in the range
0.04 <α/f < 0.16, and the numerical simulations indicate that for this range both a
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Figure 16. Time evolution of Vint(t) and the average interior enstrophy V int for numerical
simulations with Re= 15 000. (a) Vint(t) for A/F = 0, A/F =0.02, A/F =0.04, and
A/F =0.08. (b) Data for A/F = 0 (for reference), A/F = 0.10, A/F =0.20, and
A/F =0.40. In (c) the average interior enstrophy V int is plotted as function of A/F,
and can be seen to decrease exponentially for 0 < A/F < 0.2 .
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Run A |ωmean| ρmean/L

1 0.00 25.4 0.130
2 0.02 23.9 0.137
3 0.04 19.2 0.143
4 0.06 19.8 0.144
5 0.08 18.1 0.148
6 0.10 16.7 0.154
7 0.15 17.8 0.173
8 0.20 12.4 0.196
9 0.40 6.75 0.285

10 0.60 1.21 0.433

Table 4. A summary of the parameters used in the simulations with Ekman damping (with
Re =15 000 and F = 1.00). The last two columns represent the dimensionless mean vortex
amplitude, |ωmean|, and the average vortex radius, ρmean/L, respectively.
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Figure 17. A log–log graph of the phase averaged energy spectrum for Re =5000, 10 000,
15 000 and 20 000 and F = 0.80 (runs 27, 34, 39 and 42, respectively, in table 3) at t =30. For
both values of Re, a k−5/3 power law for low wavenumbers, and a k−3 power-law fit exists
for high wavenumbers. These power laws are consistent with an inverse energy cascade, and
an enstrophy cascade, respectively. Also note the shift of the ‘knee’ in these spectra as the
Reynolds number changes, consistent with changes in boundary-layer thickness.
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Figure 18. (a) A log–log graph of the (phase averaged) energy spectrum for the different
values of A/F (0, 0.04, 0.06, 0.10, 0.20 and 0.60) for Re =15 000 and F =1.00 at t = 30.
As the value of A/F increases, and the flow becomes more strongly damped, the spectra
become steeper. Strong damping appears to suppress the formation of any vortices and the
flow is not turbulent. For weak damping the spectra are consistent with a k−5/3 power law for
low wavenumbers, and a k−3−ζ power law for high wavenumbers, with ζ ≈ (6 ± 1)A. (b) The
scaling exponent ζ of the spectrum in the direct cascade regime for different values of A/F.
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k−5/3 and k−3−ζ spectrum are present (with ζ proportional to A and in the range
0 < ζ < 1). The spectra steepen with increasing A at high wavenumbers. The first three
simulations, with A/F = 0.00, 0.04 and 0.06, revealed spectra with a k−5/3 range for
30 < k < 140 and a k−3−ζ range for 160 < k < 300 where ζ is slowly increasing from
0 to 0.3–0.4. The more strongly damped cases with A/F = 0.10 and 0.20 show an
overall decrease in energy, but similar spectra are observed with a k−3.5 and k−4

spectrum for high wavenumbers, respectively. Increasing the Ekman damping further,
we find that the simulations with A/F = 0.40 and 0.60 show much steeper (and most
probably exponentially decaying) spectra. In particular when A/F = 0.60, the flow
field is not turbulent anymore and vorticity is mainly present in thin boundary layers,
which do not detach from the boundary (and do not roll up to form vortices).

The spectral slope, for k � 140 (for small A) and for k � 100 (for relatively large A),
as a function of the dimensionless Ekman damping rate A is plotted in figure 18(b).
The following modified power law is found: k−3−βA with β = 6 ±1 (note that F = 1.0
for this set of simulations). The steepening of the high wavenumber spectrum with
increasing drag has been observed in laboratory experiments using magnetically forced
stratified flows (Danilov et al. 2002; Boffetta et al. 2005), in rotating flows (Narimousa,
Maxworthy & Spedding 1991) and in decaying turbulence in thin soap films (Kellay,
Wu & Goldburg 1998) where the high-wavenumber spectrum had slopes from k−3

to k−5.5. Both Bernard (2000) and Nam et al. (2000) studied the influence of friction
on the direct cascade of forced two-dimensional turbulence and showed that the k−3-
scaling of the direct enstrophy cascade had to be corrected by a factor proportional to
the friction A, i.e. the following scaling is expected: k−3−ζ with ζ = βA > 0. Numerical
confirmation was provided by Nam et al. (2000) and Boffetta et al. (2002) with direct
numerical simulation (DNS) of Ekman–Navier–Stokes turbulence, and their results
are consistent with our numerical data. Nam et al. (2000) obtained β ≈ 5 and Boffetta
et al. (2002) found the value β ≈ 9.

It is interesting to compare these numerical observations with the energy and passive
scalar spectra that were obtained in the laboratory experiments discussed in § 3.2. The
wavenumber at which the transition occurs between the k−5/3 and k−3 power laws is at
a similar wavenumber to the maximum that could be resolved using particle-tracking
velocimetry in the laboratory experiments (where Re ∼ 15 000). Hence, it was not
surprising that we could not resolve a k−3 power law in these laboratory experiments.
The observed k−1 power law spectrum of the scalar spectrum (figure 8) is in the
same high-wavenumber range in which the enstrophy cascade is observed in these
numerical experiments, in agreement with theory and simulations of Nam et al. (1999,
2000). They noted that at high wavenumbers the straining of filaments of vorticity is
essentially the same as that of a passive scalar. As the energy spectrum is related to
the enstrophy spectrum by V (k) ∼ k2E(k), the enstrophy spectrum (and the spectra of
passive tracers) should have a k−1 spectrum when the energy spectrum shows a k−3

range at high wavenumbers.

5. Conclusion
We have conducted experiments and numerical simulations of a quasi-two-

dimensional forced flow where the boundary layers near the lateral no-slip walls act
as the sole source of vorticity. These experiments and simulations extend conclusions
from previous observations on energy spectra of decaying two-dimensional turbulence
in bounded domains with no-slip walls (Clercx & van Heijst 2000) to those of forced
(although presumably not fully turbulent) two-dimensional bounded flows. The
‘knee’ in the energy spectrum, at the border between the k−5/3 and the k−3 range, is
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determined by the boundary-layer thickness. Moreover, the present experimental set-
up enables the generation of a sea of interacting vortices with specific characteristics,
such as the average vortex radius and strength which are determined by the forcing
parameters.

The average vortex size in the present experiments is controlled by the boundary-
layer thickness and the ‘roll-up’ process of these layers. The scaling is described by
equation (2.6), and shows good agreement with the data from numerical simulations.
Agreement is also found with laboratory experiments where vortex sizes corresponding
to approximately 10–15 % of the tank size were observed for Re= 15 000 and
0.5 � F � 2.0. The scaling of the average vortex amplitude is found to agree with
equation (2.7).

There are two main reasons why subsequent vortex interactions do not lead to
the emergence of larger structures, namely vortex stripping by the background shear
and decay by Ekman pumping. Numerical experiments by Boffetta et al. (2002) have
shown that Ekman pumping can limit the size of vortices in continually forced two-
dimensional turbulence, so it is difficult to distinguish between the two processes in a
laboratory experiment. In the absence of Ekman pumping, numerical simulations have
clearly shown that vortex stripping is the important mechanism by which the eddy size
is limited. Numerical simulations using a linear damping term to model the Ekman
decay revealed that, for a forcing frequency A/F � 0.1, there was little change to the
vortex size and energy spectrum compared to the undamped case. For A/F � 0.3, the
vorticity formed at the boundaries decays rapidly before it is injected into the interior
and hence no turbulent field emerges. Laboratory experiments typically lie in the
range of α/f = 0.04–0.16, so that vortex stripping was a more important mechanism
than Ekman damping for removing vorticity from the coherent vortex structures.

In both numerical and laboratory experiments, we found that the degree of turbu-
lence within the tank is determined by the frequency and amplitude of the forcing.
When F � 1.5, the interior becomes well mixed by a field of dipoles resulting from
flow separation. When F � 2.0, the flow is not turbulent because the tank oscillates
too fast for the formation of dipolar structures to occur, so that any vortices formed
remain near the walls. For these weakly turbulent cases there is a strong difference in
mixing rates between the centre of the tank (where dispersion is very slow) and the
near-wall region, where dispersion occurs rapidly along the periphery of the tank.

Energy spectra calculated for numerical simulations with Re = 5000, 10 000, 15 000
and 20 000 with F = 0.80 revealed two distinct parts of the spectrum above and below
the characteristic wavenumber of the boundary layer, kδ . For k < kδ , the spectrum
obeyed a k−5/3 power law, which is usually thought of as characterizing an inverse
energy cascade. For k > kδ , the spectrum had a steeper k−3 power law, representative
for decay of enstrophy by filamentation of vorticity. Because kδ is proportional to√

Re, by varying Re in the simulations (and keeping F constant) we were able to
change the wavenumber at which energy is injected into the flow. When a linear
damping term was included to model the effect of Ekman pumping, the spectra were
generally steeper than in the non-damped case, but for the parameter range relevant
for the laboratory experiments it was found that both a k−5/3 and a k−3-to-k−3.5

range should be present in the energy spectrum. The high-wavenumber spectrum in
our numerical simulations seems consistent with theoretical predictions by Bernard
(2000) and Nam et al. (2000), who showed that the direct cascade is characterized by
a power law: k−3−ζ , with ζ ∝ A. The constant of proportionality is in the same range
as previously reported by Nam et al. (2000) and Boffetta et al. (2002).

In the laboratory experiments we observed a k−5/3 power law of the energy
spectrum (the k−3 range could not be resolved directly). The intensity spectrum
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of the dye, after having been mixed by the turbulent field, had a k−1 power law
behaviour at high wavenumbers, consistent with the prediction of Batchelor (1959).
The laboratory observations of a k−1 scalar spectrum are consistent, although not a
sufficient condition, with the presence of the k−3 enstrophy cascade (Nam et al. 1999).
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